Kamis, 04 Februari 2010

Kekuatan Impian

BENARKAH KEKULE MENETAPKAN RUMUS INTI BENZENA HANYA BERDASARKAN MIMPI?

Dan seorang Kekule telah membangun suatu pemahaman yang ilmiah walaupun bersumber dari sesuatu yang dianggap sama sekali bukan metode ilmiah.

Setiap kali membuka buku Kimia Organik dan melihat struktur benzena tentu akan mengingatkan kita pada sosok ilmuwan yang terkemuka dalam sejarah ilmu kimia. Ilmuwan itu bernama Kekule yang memiliki nama lengkap Friedrich August Kekule. Dilahirkan di Darmstadt, Hesse, Jerman pada 7 September 1829 silam, Kekule dimasa kecilnya dikenal sebagai seorang yang ramah, cerdas dan mempunyai bakat menggambar sekaligus menguasai tiga bahasa, yaitu Perancis, Italia dan Inggris.

Ketika kuliah di Universitas Geissen, sebuah keputusan besar telah merubah alur kehidupannya. Ia memilih untuk pindah disiplin ilmu dari Arsitektur ke Ilmu kimia, walaupun harus ditentang oleh keluarganya yang mengangap tidak ada masa depan dalam ilmu kimia. Tetapi semangat Kekule tidak luntur karena Kekule mengangap tidak ada bedanya antara arsitektur dan kimia sebab kimia juga merupakan arsitektur molekul. Keberaniannya mengambil keputusan ini tidak terlepas dari pengaruh yang diberikan oleh Justus Von Liebig (kimiawan terkemuka diwaktu itu) yang menciptakan imajinasi yang menarik tentang ilmu kimia.

Ditahun 1851 Kekule lulus kuliah dan melanjutkan studinya ke Paris untuk mendapatkan gelar Doktor. Dan ditahun 1856 Kekule kembali ke Jerman dan di angkat sebagai guru besar kimia di Universitas Heidelberg. Sewaktu itu Kekule tertarik pada teori valensi yang dikembangkan oleh Frankland yakni setiap atom mempunyai kemampuan untuk bergabung dengan atom lain. Teori valensi ini membantu para ahli kimia untuk menentukan molekul senyawa kimia, tetapi tidak semua dapat di tentukan dengan pendekatan teori ini, karena molekul senyawa kimia bukan sekedar sekumpulan atom unsur tetapi juga merupakan sekumpulan atom yang mempunyai susunan tertentu. Dari hal itu, Kekule mengemukakan gagasannya mengenai struktur molekul, dimana kumpulan atom mempunyai susunan tertentu untuk membentuk suatu senyawa kimia. Struktur ini kemudian lebih dikenal sebagai struktur Kekule.

Mimpi dan Struktur Benzena

Salah satu masalah dalam rumus kimia yang sulit terpecahkan dilebih dari 100 tahun adalah struktur benzena. Tidak ada yang dapat menggambarkan bagaimana enam atom karbon dan enam atom hidrogen membentuk struktur benzena serta dalam bentuk apa sebaiknya rumus itu ditampilkan. Kemudian Kekule (setelah menemukan struktur kekule) berusaha untuk memecahkan misteri tersebut.

Ada beberapa versi cerita yang menceritakan proses penemuan benzena. Salah satu versi yang diyakini kebenarannya adalah bahwa pada suatu malam di tahun 1865 Kekule tertidur di dekat perapian. Kekule melihat ular bergerak menari-nari. Tiba-tiba bagian ekor dari ular itu bersambungan dengan kepalanya, maka terjadilah gelang rantai yang terus berputar-putar. Mimpi inilah yang menghantarkan Kekule pada penemuan struktur Benzena.

Perihal mimpi ini sempat Ia ceritakan kepada ahli kimia yang lain. Tetapi mereka menganggap bahwa mimpi tersebut hanyalah bunga tidur yang tidak ada hubungannya dengan ilmu kimia. Tetapi Kekule tetap berpendapat bahwa ini bukanlah mimpi yang biasa saja, karena mimpi tersebut selalu teringat dalam benaknya. Akhirnya Kekule berusaha menghubungkan antara mimpinya dengan struktur benzena yang masih misterius tersebut.

Misteri tersebut terpecahkan setelah Kekule mengeluarkan hipotesisnya yang menggambarkan bahwa struktur benzena berupa enam atom karbon yang terdapat di sudut-sudut heksagon beraturan dengan satu atom hidrogen melekat pada setiap atom karbon, seperti penggambaran pada mimpi Kekule. Agar setiap atom karbon mempunyai valensi empat Ia menyarankan ikatan tunggal dan ganda dua berselang di sekeliling cincin, yang sekarang lebih dikenal sebagai sistem konjugasi ikatan ganda dua. Kekule menyarankan ikatan tunggal dan ganda dua bertukar posisi di sekeliling dengan cepat sehingga reaksi-reaksi khusus pada alkena tidak dapat terjadi.

Sisa hidup Kekule dihabiskan di Universitas Bonn sebagai guru besar kimia. Ditahun 1895 Maharaja Wilhelm II menambahkan Von Stradonitz kepada namanya. Setahun kemudian Kekule akhirnya meninggal dunia tetapi hasil karya besarnya sampai sekarang menjadi kontribusi utama pada kemajuan ilmu kimia terutama penentuan struktur benzena serta tentang tetravalensi karbon/struktur atom Kekule yang kemudian hari diperluas ke bentuk tiga dimensi oleh Jacobus Henricus van’t Hoff. Selanjutnya struktur itu diteruskan ke bentuk teori elektron oleh Joseph Achille Le Bel dan G. N Lewis, serta ke bentuk mekanika kuantum oleh Linus Carl Pauling.

Suatu waktu Kekule pernah berujar ‘Mari kita belajar ke mimpi .. barangkali akan kita temukan kebenaran (itu). Tetapi mari kita waspada menerbitkan mimpi hingga mereka telah teruji oleh bangun pemahaman. Penemuan yang harus diakui tidak terlepas karena adanya factor lucky, tetapi setidaknya hal ini mengajarkan bahwa ditengah perjuangan berat yang menguras waktu, pikiran dan tenaga serta mungkin keringat darah dalam melaksanakan penelitian, siapa tahu Tuhan berbaik hati kepada kita dengan memberikan semacam 'hadiah' atas jerih payah kita itu.

Mengutip ucapan Sir Harold Walter Kroto, peraih nobel Kimia 1985 untuk penemuan molekul C-60, "Teruslah mencari, karena sesuatu yang tak terduga bisa muncul disaat kita berhenti berharap". Tetapi haruslah diingat bahwa Penemuan karena factor lucky/kebetulan kadang-kadang berkat suatu nasib mujur, karena seperti yang diamati oleh Louis Pasteur, bahwa "dalam sains, kebetulan biasanya memilih pikiran yang telah dipersiapkan”. Dan seorang Kekule telah membangun (mempersiapkan) suatu pemahaman yang ilmiah walaupun bersumber dari sesuatu yang dianggap sama sekali bukan metode ilmiah.

Sejarah Benzena

Nama “benzena” memiliki perjalanan sejarah yang panjang yang dimulai dari tanah air kita. Saat zaman Sriwijaya para pedagang Arab mendatangi Kepulauan Nusantara untuk mencari bahan-bahan alami. Salah satunya adalah kemenyan Sumatera (Styrax sumatrana L) yang harganya tinggi di kalangan masyarakat sekitar Laut Tengah. Orang Arab menyebutnya luban jawi (“kemenyan nusantara”), dan lidah Eropa menjadi benjui atau benjoin, sampai akhirnya menjadi benzoe atau benzoin dalam bahasa Latin.

Pada abad ke-17 para ilmuan berhasil mengisolasi suatu asam dari kemenyan tersebut, yang diberi nama acidium benzoicum (asam benzoat). Kemudian pada tahun 1834 Eilhart Mitscherlich dari Jerman mengeluarkan atom-atom oksigen dari molekul asam benzoat sehingga ia memperoleh senyawa baru berwujud cair yang hanya mengandung atom-atom C dan H. Mitscherlich menamai senyawa itu benzol.

Ternyata senyawa “benzol” itu sama dengan senyawa yang disintesis oleh Michael Faraday dari Inggris pada tahun 1825. Faraday membuat senyawa tersebut dari gas asetilena yang saat itu dipakai untuk lampu penerangan. Setelah diketahui bahwa senyawa ini memiliki rumus molekul C6H6 dan mengandung ikatan tak jenuh, maka sejak tahun 1845 nama benzol diubah menjadi benzena, sebab akhiran –ena lebih tepat untuk senyawa-senyawa tak jenuh, sedangkan akhiran –ol hanya lazim untuk alkohol-alkohol.

Berdasarkan rumus molekulnya, C6H6, para pakar kimia saat itu berpendapat bahwa senyawa ini memiliki ikatan tak jenuh yang lebih banyak dari alkena atau alkuna. Oleh karena itu, diusulkanlah beberapa rumus struktur benzena seperti:

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/benz_1.gif

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/benz_2.gif

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/benz_3.gif

Akan tetapi alangkah kagetnya para ilmuan saat itu ketika mengamati bahwa benzena tidak dapat mengalami adisi dan justru reaksi-reaksi benzena umumnya reaksi substitusi.

Akhirnya pada tahun 1865, Friedich August Kekule dari Jerman berhasil menerangkan struktur benzena. Keenam atom karbon pada benzena tersebut melingkar berupa segi enam beraturan dengan sudut ikatan 120 derajat.


Kelemahan Struktur Kekule

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/image001.gif

Kekule adalah orang pertama yang mengemukakan struktur benzene yang dapat diterima. Karbon tersusun dalam bentuk hexagon (segienam) dan ia mengemukakan ikatan tunggal dan rangkap yang bergantian diantara karbon karbon tersebut. Setiap karbon terikat pada sebuah hydrogen. Diagram berikut ini merupakan penyederhanaan dengan menghilangkan karbon dan hydrogen.

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/benzena_kekule.gif

Meskipun Struktur Kekule merupakan struktur benzena yang dapat diterima, namun ternyata terdapat beberapa kelemahan dalam struktur tersebut. Kelemahan itu diantaranya:

  1. Pada struktur Kekule, benzena digambarkan memiliki 3 ikatan rangkap yang seharusnya mudah mengalami adisi seperti etena, hekesena dan senyawa dengan ikatan karbonrangkap dua lainnya. Tetapi pada kenyataanya Benzena sukar diadisi dan lebih mudah disubstitusi.
  2. Bentuk benzene adalah molekul planar (semua atom berada pada satu bidang datar), dan hal itu sesuai dengan struktur Kekule. Yang menjadi masalah adalah ikatan tunggal dan rangkap dari karbon memiliki panjang yang berbeda.

C-C

0.154 nm

C=C

0.134 nm

  1. Artinya bentuk heksagon akan menjadi tidak beraturan jika menggunakan struktur Kekule, dengan sisi yang panjang dan pendek secara bergantian. Pada benzene yang sebenarnya semua ikatan memiliki panjang yang sama yaitu diantara panjang C-C and C=C disekitar 0.139 nm. Benzen yang sebenarnya berbentuk segienam sama sisi.
  2. Benzena yang sebenarnya lebih stabil dari benzena dengan struktur yang diperkirakan Kekule. Kestabilan ini dapat dijelaskan berdasarkan perubahan entalpi pada hidrogenasi.

Hidrogenasi adalah penambahan hidrogen pada sesuatu. Untuk mendapatkan perbandingan yang baik dengan benzene, maka benzena akan dibandingkan dengan sikloheksen C6H10. Sikloheksen adalah senyawa siklik heksena yang mengadung satu ikatan rangkap 2.

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/image004.gif

Saat hirogen ditambahkan pada siklohesena mana akan terbentuk sikloheksana, C6H12. Bagian "CH" menjadi CH2 dan ikatan rangkap menjadi ikatan tunggal.

Persamaan hidrogenasi dari siklohesen dapat ditulis sebagai berikut:

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/image007.gif

Perubahan entalpi pada reaksi ini -120 kJ/mol. Dengan kata lain setiap 1 mol sikloheksen bereaksi, energi sebesar 120 kJ dilepaskan.

Jika cincin memiliki dua ikatan rangkap (Cyclohexa-1,3-diene), dua kali lipat ikatan yang harus diputuskan dan dibentuk. Dengan kata lain Perubahan entalpi pada hidrogenasi cyclohexa-1,3-diene akan menjadi 2 kali lipat dari perubahan entalpi pada sikloheksen yaitu, -240 kJ/mol.

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/image009.gif

Namun perubahan entalpi ternyata sebesar -232 kJ/mol yang jauh berbeda dari yang diprediksikan.

Bila hal yang sama diterapkan pada struktur Kekule dari benzen (yang juga disebut Cyclohexa-1,3,5-triene), perubahan entalpi dapat diprediksi sebesar -360 kJ/mol, karena 3 kali lipat ikatan pada kasus sikloheksen yang diputuskan dan dibentuk.

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/image010.gif

Namun ternyata hasil yang benar adalah sekitar -208 kJ/mol, sangat jauh dari prediksi.

Hal ini akan lebih mudah untuk dimengerti dengan membaca diagram enthalpi di bawah ini:

http://kimia.upi.edu/utama/bahanajar/kuliah_web/2008/Siti%20Latifah%20A_054413/BenZena.Com/Struktur%20n%20Reaksi/image011.gif

Garis, panah dan tulisan yang di cetak tebal melambangkan perubahan yang sebenarnya. Sedangkan garis titik-titik melambangkan perubahan yang diprediksikan. Hal yang penting dari diagram ini adalah, bahwa benzena yang sebenarnya memiliki struktur yang lebih stabil dari prediksi yang dibentuk oleh struktur Kekule, sehingga perubahan entalpi hidrogenasinya lebih rendah dibanding dari perubahan entalpi dari hidrogenasi struktur kekule.Diagram perubahan entalpi diatas menunjukkan bahwa benzene yang sebenarnya lebih stabil sekitar150 kJ/ mol dibandingkan dengan perkiraan perubahan entalpi dari struktur benzena yang diperkirakan Kekule. Peningkatan stabilisasi ini disebut juga sebagai delokalisasi energi atau resonansi energi dari benzene.

Tidak ada komentar:

Posting Komentar